Common Sort Algorithms
There are many different sorting algorithms, but some of the most common ones include:
- Bubble sort
- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
- Counting sort
- Radix sort
- Bucket sort
Bubble Sort
Bubble sort is a simple sorting algorithm that works by repeatedly comparing adjacent elements and swapping them if they are in the wrong order. The algorithm starts at the beginning of the array and compares the first two elements. If the first element is greater than the second element, they are swapped. The algorithm then moves on to the next two elements and repeats the process. This continues until the end of the array is reached.
def bubble_sort(array):
for i in range(len(array) - 1):
for j in range(len(array) - i - 1):
if array[j] > array[j + 1]:
array[j], array[j + 1] = array[j + 1], array[j]
return array
void bubble_sort(int array[], int size) {
int i, j;
for (i = 0; i < size - 1; i++) {
for (j = 0; j < size - i - 1; j++) {
if (array[j] > array[j + 1]) {
int temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
}
Selection Sort
Selection sort is another simple sorting algorithm that works by repeatedly finding the minimum element in the array and swapping it with the first element. The algorithm starts at the beginning of the array and finds the minimum element. It then swaps the minimum element with the first element and moves on to the next element. This continues until the end of the array is reached.
def selection_sort(array):
for i in range(len(array) - 1):
min_index = i
for j in range(i + 1, len(array)):
if array[j] < array[min_index]:
min_index = j
array[i], array[min_index] = array[min_index], array[i]
return array
void selection_sort(int array[], int size) {
int i, j, min_index;
for (i = 0; i < size - 1; i++) {
min_index = i;
for (j = i + 1; j < size; j++) {
if (array[j] < array[min_index]) {
min_index = j;
}
}
int temp = array[i];
array[i] = array[min_index];
array[min_index] = temp;
}
}
Insertion Sort
Insertion sort is a sorting algorithm that works by repeatedly inserting elements into their correct position in a sorted array. The algorithm starts at the beginning of the array and compares the first element to the elements in the sorted array. If the first element is smaller than any of the elements in the sorted array, it is inserted into the sorted array at the correct position. The algorithm then moves on to the next element and repeats the process. This continues until the end of the array is reached.
def insertion_sort(array):
for i in range(1, len(array)):
j = i - 1
key = array[i]
while j >= 0 and array[j] > key:
array[j + 1] = array[j]
j -= 1
array[j + 1] = key
return array
void insertion_sort(int *array, int n) {
for (int i = 1; i < n; i++) {
int j = i - 1;
int current = array[i];
while (j >= 0 && array[j] > current) {
array[j + 1] = array[j];
j -= 1;
}
array[j + 1] = current;
}
}
Merge sort
Merge sort is a divide-and-conquer sorting algorithm that works by recursively splitting an array into two halves, sorting each half, and then merging the sorted halves back together.
def merge_sort(array):
if len(array) <= 1:
return array
middle = len(array) // 2
left = merge_sort(array[:middle])
right = merge_sort(array[middle:])
return merge(left, right)
def merge(left, right):
result = []
i = 0
j = 0
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
void merge_sort(int *array, int n) {
if (n <= 1) {
return;
}
int middle = n / 2;
merge_sort(array, middle);
merge_sort(array + middle, n - middle);
merge(array, array + middle, n);
}
void merge(int *array, int *left, int left_size) {
int *right = array + left_size;
int *result = array;
int i = 0;
int j = 0;
while (i < left_size && j < right_size) {
if (left[i] <= right[j]) {
*result++ = left[i++];
} else {
*result++ = right[j++];
}
}
while (i < left_size) {
*result++ = left[i++];
}
while (j < right_size) {
*result++ = right[j++];
}
}